If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-29x-106=0
a = 2; b = -29; c = -106;
Δ = b2-4ac
Δ = -292-4·2·(-106)
Δ = 1689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-\sqrt{1689}}{2*2}=\frac{29-\sqrt{1689}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+\sqrt{1689}}{2*2}=\frac{29+\sqrt{1689}}{4} $
| 1^8+c=4^5 | | 12y=36+8y | | 8b+3=14 | | 45-t=17 | | .-x/3=8 | | |3x-4|=|10-4x| | | 28=15-2.5x | | 3m−9m=24 | | 172n=180n-360 | | (x+11)(x-11)²=0 | | X^2+4y-3=0 | | 2(y-1)-3y=3(y-6 | | 9(2t+1)-13=t-(t+3) | | 8=-7w+4(w-4) | | -5(5-3v)=-155 | | 4a-6=-2a+10 | | 5+10x=40+x | | 17-1/9x=1017-1/9x=10 | | -5(5-3v=115 | | 5+10x=-40+8 | | 9((x+9)/7)-7=0 | | -7w-14=7(w-4) | | 2(2x+4)-10=12(16x-10 | | 5+2c-5=20 | | 4x-2=-40+x | | -4(-7w+8)-9w=7(w-2)-2 | | 3/2x+5=4/4x-7 | | 9a+4+2=5a+22 | | 0,5+0,4+152=x | | 8a+3=2a+15 | | 3n/4+n/5=7/10 | | 232=39-v |